DRUG-DRUG INTERACTIONS OF ANTI-INFECTIVE DRUGS: UTILITY OF FLUORESCENCE CYP INHIBITION ASSAYS IN DRUG DISCOVERY

Markus Friden¹, K. Vanaja² and Vrinda N. Nandi³*

¹Department of Pharmacokinetics and Drug Metabolism, AstraZeneca Mölndal, Mölndal, Sweden, ²Department of Pharmaceutics, Al Ameen College of Pharmacy, Bangalore, India, ³Department of Drug Metabolism, Pharmacokinetics and Bioanalytical Chemistry, AstraZeneca R&D, Bangalore, India

SUMMARY

Drug interactions are often a result of induction or inhibition of cytochrome P450 (CYP) enzymes by co-administered drugs. A high throughput fluorescence assay using cDNA-expressed human CYP isozymes and fluorogenic substrates has been reported for the study of CYP inhibition. We used this assay to evaluate CYP inhibition profiles of 21 marketed anti-infective drugs. We found that six of the eight potent inhibitors identified in this screen (IC₅₀ <10 μ M against at least one CYP isozyme) correlated with significant drug-drug interactions in the clinic. In contrast, the intermediate and weak inhibitors (IC₅₀ >10 μ M) did not indicate clinically significant drug interactions. Furthermore, we observed that results obtained in the fluorescence assay correlated with conventional, well-established, low throughput methods that utilize human liver microsomes. These data suggest that

^{*} Author for correspondence:
Vrinda N. Nandi, Ph.D.
Department of Drug Metabolism
Pharmacokinetics and Bioanalytical Chemistry
AstraZeneca R&D
Avishkar, P.B. No. 2483
Bellary Road, Hebbal
Bangalore, India 560 024
e-mail: vrinda.nandi@astrazeneca.com

in the early stages of drug discovery, the fluorescence assay for CYP inhibition could be used in conjunction with a human liver microsomal assay to identify new chemical entities with a potential for drugdrug interactions.

KEY WORDS

drug-drug interactions, anti-infective drugs, CYP inhibition, clinical significance

INTRODUCTION

With an increased reliance on multi-drug therapy and prescription of novel drug classes, drug-drug interactions are being reported fairly frequently. The severity of drug interactions can range from slight alterations in plasma level of co-administered drugs to life-threatening toxicities or sub-optimal clinical outcomes /1-3/. Drugs identified to perpetrate interactions find restricted use. In the event of severe toxicity, the interacting drug may be withdrawn from the market /4,5/. Thus, identification, resolution and prevention of drug interactions are critical for safe and efficacious therapy /6-9/. In addition, the regulatory authorities require that the metabolism of an investigational new drug must be defined during the development phase and its interactions with other drugs should also be explored as part of an adequate assessment of safety and efficacy /9,10/.

The clinical consequences of drug interactions with anti-infectives go beyond the risk of increased toxicity. The presence of an interacting drug in a multi-drug anti-infective regimen can have detrimental effects on therapeutic efficacy /11-13/. Drug interactions that decrease the exposure of the anti-infective drug lead to sub-optimal therapy causing treatment failures. Moreover, sub-therapeutic levels of anti-infectives also lead to a rapid development of resistance. Several clinical reports have indicated that the difference between clinical cure and treatment failure is dependent on the achievement of pharmaco-kinetic and pharmacodynamic (PK/PD) breakpoints through an appropriate dosing regimen /14-17/.

Drug interactions are often the result of induction or inhibition of cytochrome P450 (CYP) enzymes by co-administered drugs. Since

inhibition of CYP isozymes is more common, CYP inhibition assays are used to identify drug-drug interaction potential with new chemical entities. Traditionally, human or rat liver microsome-based assays have been used to monitor inhibition of CYP isozymes. Since microsomes contain an array of different drug-metabolizing enzymes. substrates that are highly specific towards individual isozymes must be used /18,19/. Moreover, microsomal methods are laborious and require chromatographic separation of the substrate from the metabolites. This makes these assays impractical for use in early drug discovery cascades that demand a short turn-around time. To meet such demands, high throughput screens, such as the fluorescence assay /20/, the cocktail incubation assay by LC-MS-MS /21/, and the radiometric assay /22/, have been reported. The fluorescence assay using cDNA-expressed human CYP isozymes /20.23/ obviates the need for extraction and separation steps and thus provides the highest throughput over all the assays. Several reports have confirmed that with the exception of CYP3A4, the inhibition of individual cDNAexpressed CYP isozymes correlates with the inhibition seen in human microsomes /22,24-26/. We used the fluorescence CYP inhibition assay to study the inhibitory potential of 21 anti-infective drugs against five major drug metabolizing CYPs. Drugs that inhibited CYP2C9 were confirmed in the human liver microsomal assay monitoring diclofenac 4'-hydroxylation. Furthermore, we observed that potent CYP inhibitors with IC_{50} less than 10 μM are often involved in clinically significant drug interactions. This suggests that the fluorescence based CYP inhibition screen can provide a preliminary evaluation of the drug interaction potential in the early stages of drug discovery.

MATERIALS AND METHODS

Amphotericin, ampicillin, azidothymidine, cefaclor, chloramphenicol, ciprofloxacin, clindamycin, clotrimazole, ethambutol, isoniazid, metronidazole, piperacillin, pyrazinamide, roxithromycin, streptomycin, sulfaphenazole, sulfasalazine, tobramycin, trimethoprim, troleandomycin and vancomycin were purchased from Sigma Chemicals, St. Louis, MO, USA. Quinidine sulfate was purchased from Research Biochemicals Inc., MA, USA. Insect cell CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 SUPERSOMESTM and

3-[2-(N,N-diethyl-N-methyl-ammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC), were purchased from BD-Gentest™, Woburn, MA, USA. The cytochrome P450 content, protein content, cytochrome C reductase activity and specific activity of each batch of isozymes was provided as a product insert from the manufacturer. Human liver microsomes were purchased from XenoTech LLC, Kansas City, KS, USA. Glucose-6-phosphate, 7-hydroxy-3-trifluoro-coumarin (7-HFC), 7-methoxy-3-trifluoro-coumarin (7-MFC), magnesium chloride hexahydrate, β-NADP, potassium phosphate dibasic, potassium phosphate monobasic, and Trizma® base were purchased from Sigma Chemicals, St. Louis, MO, USA. NADPH was purchased from SuSkanda Organics Inc., Ishaquah, USA. Acetonitrile (HPLC grade) was purchased from Spectrochem, Mumbai, India. Acetic acid, hydrochloric acid, methanol (HPLC grade) and perchloric acid were purchased from S-D-Fine-Chem Ltd, Mumbai, India. Trifluoroacetic acid was purchased from Applied Biosystems, Foster City, CA, USA, Flatbottom Costar® microtiter plates (Greiner Labortechnik, Frickenhausen, Germany) were used for incubations of recombinant CYP isozymes. Microtiter plates were incubated in a LEAD Instruments Incubator-25 (Bangalore, India). Incubations of human liver microsomes were performed in Eppendorf® tubes (Hamburg, Germany) using a Precision reciprocal shaking bath, Model 25 (Chicago, USA). An electronic 12-channel (50 or 300 µl) Finnpipette® (Helsinki, Finland) was used for dispensing solutions in the microtiter plate assay. Fluorescence measurements were made in a Wallac Victor 1420 multilabel HTS reader (Perkin Elmer, Boston, USA). IC50 was calculated using GraphPad Prism 3.0 (GraphPad Software Inc.). The HPLC system used for monitoring diclofenac and its metabolite consisted of a Class VP series Shimadzu HPLC (Shimadzu, Japan), equipped with a DGU-14A online degasser, LC-10AT binary pumps, SIL-10AD autosampler, SCL-10A system controller and SPD-10A UV-Vis detector. Chromatographic separation was achieved using a reverse phase Kromasil 100 column (C18 5 µm, 250 x 4.6 mm; Flexit-Jour Laboratories, Pune, India) at 25°C.

Preparation of stock solutions and serial dilutions

Ampicillin, azidothymidine, cefaclor, clindamycin and isoniazid were dissolved in water. Ethambutol, metronidazole, piperacillin, pyrazinamide, streptomycin, tobramycin and vancomycin were dissolved in 0.5 M phosphate buffer, pH 7.4. Chloramphenicol, clotrimazole, roxithromycin, sulfaphenazole, trimethoprim and quinidine were dissolved in acetonitrile (AcN). Amphotericin B was dissolved in a solution of AcN:DMSO (2:3, v/v). Ciprofloxacin was prepared in a solution of AcN:phosphate buffer (1:4, v/v) and 0.4% trifluoroacetic acid. Sulfasalazine was dissolved in a solution of AcN:DMSO (94:6, v/v). Eight concentrations of each anti-infective drug were made by three-fold dilutions of an initial stock of approximately 100 μ M. Diclofenac sodium was dissolved in 0.1 M Tris buffer, pH 7.5.

Inhibition of CYP isozymes by anti-infective drugs

A high-throughput CYP inhibition screen based on cDNA expressed isozymes and fluorogenic substrates was chosen to evaluate CYP inhibition potential of anti-infective drugs. This assay is based on CYP catalyzed O-dealkylation reactions, which generate an easily detectable fluorescent product. The IC₅₀ for each anti-infective drug was determined using the protocol specified in the BD Gentest™ Technical Bulletin (http://:www.gentest.com) /27/. Briefly, the inhibition potential of each drug was evaluated against CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 isozymes. The CYP substrates used in the assays for each isozyme were 3-cyano-7ethoxycoumarin (CEC) for CYP1A2 and CYP2C19, 7-methoxy-4trifluoromethylcoumarin (7-MFC) for CYP2C9, 3-[2-N,N-diethyl-Nmethylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC) for CYP2D6, and 7-benzyloxyresorufin (BzRes) for CYP3A4. These substrates were maintained at the apparent Km for each isozyme. The assay was validated with positive controls: furafylline (CYP1A2), sulfaphenazole (CYP2C9), tranylcypromine (CYP2C19), quinidine (CYP2D6) and ketoconazole (CYP3A4). Drugs that inhibited CYP2C9 were confirmed in a secondary screen monitoring diclofenac metabolism in human liver microsomes. Since amphotericin B and sulfasalazine were dissolved in a high concentration of organic solvent, serial dilutions of each solvent were included as a control.

Inhibition of diclofenac-4'-hydroxylation by anti-infective drugs in human liver microsomes

Incubations were carried out in duplicate in a 0.5 ml reaction volume containing human liver microsomes (0.1 mg protein/ml),

diclofenac (3 µM) and an NADPH generating system consisting of NADP⁺ (1.3 mM), glucose-6-phosphate (3.3 mM) and glucose-6phosphate dehydrogenase (0.4 U/ml) in 0.1 M Tris buffer, pH 7.5. Serial dilutions of the anti-infective drug were pre-incubated with cofactors and buffer for 5 minutes at 37°C in a water bath. Reaction was initiated by the addition of human liver microsomes. After incubation at 37°C for 15 minutes the reaction was stopped by addition of 200 µl acetonitrile. The tubes were cooled on ice for 5 minutes, vortexed for 15 minutes and centrifuged at 14,000 rpm for 10 minutes to precipitate proteins. Diclofenac and 4'-hydroxydiclofenac were separated on a reverse phase column. The column was eluted at a flow rate of 1 ml/min using two mobile phases: A (30% acetonitrile, 70% water, 1 mM perchloric acid) and B (methanol). The elution conditions were 30% B increasing with a linear gradient to 100% B over 17 minutes. Diclofenac and 4'-hydroxydiclofenac were detected and quantified from the processed samples at 280 nm using Shimadzu Class VP series software by comparison of the absorbance against a standard curve for diclofenac and 4'-hydroxydiclofenac.

Data analysis

The IC₅₀ of the positive controls and the test compounds were determined by semi-log plot of the percent inhibition versus concentration of inhibitor using Graph-Pad Prism. The percent inhibition at a particular inhibitor concentration was calculated as shown in equation [1] by relating activity to that in the control incubation without inhibitor.

%_inhibition =
$$100 - \frac{activity}{control_activity} \cdot 100$$
 Equation [1]

Non-linear regression analysis with an equation for sigmoidal dose-response was used to fit a curve to the plotted data. This equation is solved for 50% inhibition to obtain the IC₅₀. The potencies of the inhibitors were rated as potent (IC₅₀ <10 μ M), intermediate (IC₅₀ = 10-100 μ M) and weak (>20% inhibition at ~100 μ M).

RESULTS

Inhibition of CYP isozymes by anti-infective drugs

The IC₅₀ values for the positive controls were in close agreement with the values reported in the Gentest Technical Bulletin /27/, as shown in Table 1. The IC₅₀ and the spectrum of CYP inhibition produced by each anti-infective drug on the five isozymes are reported in Tables 2 and 3. Of the 21 drugs tested, eight drugs (amphotericin, chloramphenicol, clotrimazole, isoniazid, sulfaphenazole, roxithromycin, sulfasalazine, and troleandomycin) were potent inhibitors (IC₅₀ <10 µM), three drugs were intermediate inhibitors, and the remaining ten drugs were either weak or non-inhibitors of CYP isozymes. The pattern of isozyme inhibition produced by the anti-infective drugs was variable. While several drugs inhibited CYP3A4, and some inhibited CYP2C19, very few drugs inhibited CYP1A2, CYP2C9 and CYP2D6 (Table 4). When solvent controls were run, the AcN:DMSO (2:3 v/v, resulting in final concentration of 1.2% AcN and 1.8% DMSO) cocktail produced an IC₅₀ within two-fold of that observed in the presence of amphotericin B. However, the cocktail used to dissolve sulfasalazine (AcN:DMSO 94:6 v/v, resulting in a final concentration of 2.8% AcN and 0.18% of DMSO) did not produce inhibition.

Human liver microsome assay for confirmation of CYP2C9 inhibition

Drugs that produced greater than 20% inhibition of CYP2C9 in the fluorescence assay (Tables 2 and 3) were tested for their inhibitory activity in the diclofenac 4'-hydroxylation assay. As shown in Table 5, only sulfaphenazole, clotrimazole and sulfasalazine inhibited diclofenac 4'-hydroxylation in human liver microsomes with IC50 values of 0.59 μ M, 0.37 μ M and 8.7 μ M, respectively (Table 5). The IC50 values obtained in the human liver microsomal assay were within 2-fold of the IC50 obtained in the fluorescent assay. Amphotericin B, cefachlor, chloramphenicol, ciprofloxacin and isoniazid did not inhibit diclofenac metabolism when tested at a maximum concentration of around 100 μ M.

TABLE 1

Comparison of ICs0 of positive controls for each CYP isozymaagainst the reported value from the BD-Gentest Technical Bulletin /27/

CYP isozyme	Positive control	IC50 in the fluorescence assay	Reported ICso
		(μN ⁽)	(μμ)
CYP1A2	Furafylline	1.65 ± 0.12 (n=6)	1.3
CY1'2C9	Sulfaphenazole	$0.36 \pm 0.08 (n=15)$	0.27
CYP2C19	Tranylcypromine	$0.86 \pm 0.15 (n=6)$	0.75
CYP2D6	Quinidine	$0.008 \pm 0.002 (n = 21)$	0.014
CYP3A4	Keloconazole	$0.13 \pm 0.01 (n = 7)$	0.11

Clinical significance of drug interactions with anti-infective drugs

Drug interactions were reported for all drugs that produced potent inhibition of CYP isozymes, with the exception of amphotericin B. As presented in Table 6, the interactions reported included variations in exposure, clearance or half-life of drugs co-administered with anti-infective agents screened in this study. No reports of clinically significant drug interactions were found for anti-infectives that produced intermediate or weak inhibition of CYP isozymes, with the exception of ciprofloxacin.

DISCUSSION

Amphotericin B, chloramphenicol, clotrimazole, isoniazid, roxithromycin, sulfaphenazole, sulfasalazine and troleandomycin were identified as potent inhibitors of CYP isozymes in the fluorescence assay (Table 4). With the exception of amphotericin B and sulfasalazine, all drugs produced clinically significant drug interactions, mainly via inhibition of drug metabolizing CYPs (Table 6). The apparent inhibition observed with amphotericin B was due to the high concentration of DMSO, a solvent known to inhibit CYP isozymes quite dramatically. This was further confirmed with the results of the human liver microsome CYP2C9 assay wherein amphotericin B did not produce inhibition. The lack of clinical interaction with sulfasalazine could probably be attributed to its metabolism in the gastrointestinal tract by intestinal microflora /28/. Furthermore, our results indicate that the CYP isozyme inhibition profile observed was similar to that elucidated using other techniques.

We classified cefaclor, clindamycin, and trimethoprim as intermediate or weak inhibitors of CYP isozymes in the fluorescence assay (Table 4). These drugs were not reported to produce pharmacokinetic alterations of co-administered drugs in the clinic. Ciprofloxacin was the only case in which the inhibitory response to CYP2C9 and CYP2D6 was weak *in vitro* but was reported to be significant *in vivo*. Ciprofloxacin is known to alter the pharmacokinetics of metoprolol or clozapine, theophylline and caffeine, which are substrates for CYP1A2 or CYP2D6 /29-31/. However, drug interactions with ciprofloxacin were previously shown to be non-predictive by CYP inhibition studies /32/. Ampicillin, azidothymidine, ethambutol,

TABLE 2
Inhibitory effects of antibacterial drugs on CYP1A2, CYP2C9 and CYP2C19
measured in the fluorescence inhibition assay

Compound	puno		CYP1A2			CYP2C9	6		CYP2C19	6
		ICs ₀ (μΜ)	Max. test conc. (μM)	Inhibition ^a (%)	IC ₅₀ N (µM)	Max. test conc. (μM)	Max. test Inhibition ^a IC ₅₀ Max. test Inhibition ^a conc. (%) (μ M) conc. (%) (μ M)	ICso (µ.M.)	Max. test coue. (μΝΙ)	Max. test Inhibition a cout. (%) (μλ)
-	Amphotericin	2.9			2.1			A'A	ı	
7	Ampicillin		101	Z		106	Z		106	Z
8	Azidothymidine		100	Z		112	Z		09	21%
4	Cefaclor		101	0,70		96	%I†		66	Z
S	C(1) or amphenicol		108	ž		76	37%	4.42		
9	Cir rofloxacin		106	ž		111	22%		06	151%
7	Clindamycln		80	59,6		96	Z	8.89		
œ	Ciotrimazole		86	ž	0.25			0.22		
6	Ethambutol		86	ž		129	12 %		73	Z
10	Isoníaz d		116	10%		110	47 %	2.29		
==	Meticonidazole		106	ž		112	12%		230	28%

Compound	puno		CYP1A2			CYP2C9			CYP2C19	61
		IС ₅₀ (µМ)	Max. test conc. (μM)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IC ₅₀ (μM)	Max. test conc. (μM)	Inhibition ^a (%)	IС₅₀ (µМ)	Max. test conc. (μM)	Max. test Inhibition a conc. (%) (μΜ)
12	Piperacillin		100	17%		86	17%		06	31%
13	Pyrazinamide		108	10%		102	10%		260	42%
14	Roxithromycin		118	12%		95	12%		20	42%
15	Streptomycin		101	Z		86	Z			
16	Sulfaphenazole	NA			0.35				79	78%
17	Sulfasalazine	25.1			15.9			21		
18	Tobramycin		86	Z		86	N		70	ž
19	Trimethoprim		94	18%		94	18%		94	ž
20	Troteandomycin		26	Z		26	Z		26	ž
21	Vancomycin		86	17%;		62	17%		26	N

 $^{\mathtt{a}}$ Percent inhibition at the maximum concentration tested. M = no inhibition was observed at the maximum concentration tested. NA= data not available.

TABLE 3

Inhibitory effects of antibacterial drugs on CYP2D6 and CYP3A4 measured in the fluorescence inhibition assay

Comp	Compound	-	CYP2D6			CYP3A4	
		ICso (µM.)	Max. test conc. Inhibition ^a (µM) (%)	Inhibition ^a (%)	IC ₅₀ (μM)	Max. test conc. (LM)	Inhibition a (%)
-	Amphotericin	31.6			54.3		
7	Ampleillin		106	Z		101	Ĭ
က	Azidothymidine		112	Z		100	%01
4	Cefaclar		96	IZ	93.5		
S	Chloramphenicol		64	23%		108	70%
9	Ciprofloxacin		1111	31%		105	10%;
7	Clindamycin		96	N	49.2		
∞	Clo trimazol e	10.5			0.97		
6	Elhamoutol		129	Z		86	N
10	Isoniazid		110	41%	3.80		
11	Metronid azole		112	ž		105	18%
12	Piperacillin		86	ž		100	15%

IC ₅₀ (µM) Pyrazinamide Roxithromycin Streptomycin Sulfaphenazole Sulfasalazine Tobramycin Trimethoprim Troleandomycin		CYP2D6			CYP3A4	
	n)	C ₅₀ Max. test conc. Inhibition ^a (%)	Inhibition ^a (%)	IC ₃₀ (μΜ)	Max. test conc. (μM)	Inhibition ^a (%)
	zinamide	102	Z		108	Z
	thromycin	95	21%	1.95		
	otomycin	86	Z		101	Z
	phenazole	107	Z	NA	•	
	salazine	06	35%	5.30		
	amycin	86	Z		86	Z
	ethop rim	94	ž	59.2		
	sandomy cin	76	z	76.0		
21 Vancomycin	omycin	26	N		86	Z

* Percent inhibition at the maximum concentration tested.

NI=no inhibition w *s observed at the maximum concentration tested. $NA=da\cdot a$ not available.

TABLE 4

Analysis of CYP inhibition potential as measured from the fluorescence and human liver microsomal assay and comparison with the reported clinical significance of CYP inhibition

Co	Comp sund	In	vitro fluores	In vitro fluorescence CYP inhibition assay	nhibition ass		HLM assay		Clinical reports a	
		CYP1A2	CYP2C)	CYP2C3 CYP2C19	CYP2116	CYP3A4	CYP2C9	CYP2C9 Reported cirig	Clinical significance ^a	Enzyme involved ^a
-	Amphotericin B	Po ent	Poten	CZ	In!.	In the	Z	Š		
7	Ampic:II'n	ž	Z	z	ž	ž	Z V	Š		
3	Azidathym dine	Z	Z	ž	Z	ž	Z A	Š		
4	Cefation	Z	Was	ž	Z	n T	Z	Š		
S	Chloramphenicol	z	Weak	Pote 1t	Weak	Z	Z	Yes	Yes	CYP2C9
9	Ciprofloxacin	Z	Weak	Z	Weak	Z	Z	Yes	Yes	CYP1A2
7	Clindamycin	Z	ž	Int	Z	Int.	A V	Š		
00	Clotrimazele	ž	Potent	Pote 1t	Int.	Potent	Po'e it	Yes	Yes	CYP3A4
6	Ethambutol	ž	Z	Z	Z	ž	N A	Š		
2	Is nniazid	ž	Weak	Perant	Weak	Potent	Z	Yes	Yes	CYP3A4
Ξ	Metronidazole	Z	Z	z	₹	Z	Υ V	Š		CYP2C9 CYP2C19
12	Piperacillin	ž	Z	Weak	Z	Z	Y Z	No		

ప	Comp sund	-	vitro fluores	In vitro fluorescence CYP inhibition assay	nhibition as		HLM assay		Clinical report;	
		CYP1A2	CYP2C9	CYP2C19	CYP2D6	CYPJA4	CYP2C9	CYP2C9 Reported drug interactions	Clinical significance ^a	Enzyme involved *
13	13 Pyrazinamide	ž	ž	ž	ž	Z	NA AN	Š		
4	14 Pocithromycin	z	ž	Weik	Weak	Potent	NA	Yes	Yes	CYP3A4
15	15 Streptomycin	z	ž	ž	ž	Z	NA	Š		
91	Sulfiphenazole	NA A	Pot :nt	Weik	ž	NA	Po:en:	Ye	Yes	CYP2C9
11	Sulfasalazine	ij	int.	Ĭ	Weak	Po'e it	Po en:	No		
18	Tobramycin	ž	ž	ž	ž	ž	X A	No		
19	Trim ethoprim	ž	ž	ž	ž	Ġ.	NA	No		
70	Troleandomycin	ž	ž	ž	ž	Potent	NA	Yes	Yes	CYP3A4
21	21 Vancomycin	z	ž	ž	ž	Z	NA	Š		

Inhibitors are classified as pot: $n^{\frac{1}{2}}(IC_{36} < 10 \mu M)$, intermed at (Int. $IC_{30} = 10-100 \mu M$) and weak (>20% inhibition a > 100 μM). NI = no : inhib tory (<20% inh bition at $\sim100 \mu M$).

NA = ca a not availa sle.

ND = not done.

* References are provided in Table 6.

TABLE 5

Correlation of IC₅₀ values obtained in the MTP and HLM assay for selected drugs identified as CYP2C9 inhibitors

)		
Compound	CYP2C9 IC ₃₀ in the fluorescence assay	CYP2C9 IC ₅₀ in the HLM assay	Fold difference ^a
Sulfaphenazole	0.35 µM	Мц 65.0	+1.68
Cloirimazole	0.25 µM	0.37 µМ	+1.48
Sulfasalazine	15.9 μМ	8 7µM	-1.83
Amphotericin	2.1 µM	Not inhibitory at 101 µM	NA A

* A positive value indicates that the ICs0 is greater in the HLM assay than in the MTP assay.

metronidazole, piperacillin, pyrazinamide, streptomycin, tobramycin, and vancomycin did not inhibit any of the five CYP isozymes in the fluorescence assay. Of these drugs, only metronidazole is reported to inhibit CYP2C9 and CYP2C19 /33/. In healthy volunteers, metronidazole reduces the clearance of phenytoin by 15%. This interaction is attributed to the inhibition of CYP2C9 and is not clinically significant /34/.

CONCLUSION

Using a set of 21 anti-infective drugs we have shown that the in vitro fluorescent assay using recombinant human isozymes can predict metabolism based clinical interactions for most anti-infectives studied. An IC₅₀ cut-off at 10 µM in this assay seems to be indicative of a drug interaction with a potential clinical liability. Furthermore, the assay can identify the pattern of isozyme inhibition reliably and provide a faster read-out in comparison to microsomal assays or in vivo inhibition studies. By using the fluorescence assay as a primary screen and the human liver microsome inhibition assay as the secondary screen, it is possible to distinguish false positives such as those arising from high organic solvent concentrations, or from inherent fluorescence or fluorescence quenching properties of the drugs. However, one must be cautious of commonly encountered uncertainties and sources of bias and error in extrapolation of these results to predict in vivo drug interactions. Such factors include non-specific microsomal binding, solvent effects on enzyme activities, and uncertainties in determining enzyme-available drug concentrations. In addition, the dose and route of administration, atypical multi-site kinetics of drug metabolizing enzymes, and concurrent induction and inhibition, can impact the clinical relevance of drug interactions. Thus, the overall pharmacokinetics of the drug, the roles of other drug metabolizing enzymes, active transporter systems, gut flora, and the presence of metabolites with an inhibitory potential, need to be evaluated. Until then the information from the fluorescence based in vitro CYP inhibition assays can only be used as an indication of potential drug interaction liability of new chemical entities.

/33/

Increased Cp

Warfarin

TABLE 6

Reference /40 41/ 42 34 /35/ 36 29 137 31/ 30 38 39 Reported drug inleractions, mechanism of drug inleraction and clinical significance of each inleraction significance Clinical NE(?) No (?) Yes R Yes Yes Ye Yes ž å Observed change Increased AUC Increased AUC Decreased C1, Decreased CL Decreased CL Decreased CL Increased C, Inc eased C_p increased C, Increased C, Increased t_{1/4} CYP450(s) involved CYP3A4, CYP2C19 CYP2C19, CYP2C9 CYP2C19, CYP2C9 CYP2C19 CYP2C9 CYP1A2 CYP1A2 CYP2D6 CYP1A2 CYP3A4 CYP3A4 Drug aff:cted Carbanaz spine Theophylline Tolb stanisle Tac.olim.us Me oproiol Clozapine Phenyto.n Phenyto in Phenytoin Triazolam Caffeine Chloramp henicol Interacting drug Metronidazole Ciprofloxacin Corrimazoie I soniaz'd

Interacting drug	Drug affec ed	CYP (50 (s) invo ved	Observed change	Clinica] s.gnificance	Reference
Sulfaphenazole	Phenytoin	CYP2C19, CYP2C9	In rreased C,	Yes (?)	/43,44/
	To b tramide	CYP2C9	In preased t ₁₄	Yes	/45/
Troleandomycin	Alfentanil	CYP3A4	Decreased CL	Yes (?)	,46/
	Carb amazepine	CYP3A4	Intox cation	Sé Å	,747,
	Imipramine	CYP3A4	Decreased CL	S	/48/
	Theophylline	CYP1A2	Decreased CL	NE (?)	/46/
	Triazo lam	CYP3A4	Increased AUC	Yes	/20/
Roxithromycin	Midazolam	CYP3A4	Increased AUC and t _{1/2}	No (?)	/21/
	j j				

CL = clearance; $C_p = concentration$ in plasma; AUC = area under the curve; $t_{16} = ha$ f life; NE = not evaluated.

ACKNOWLEDGEMENT

The authors thank the AstraZeneca Research Foundation, India, for the fellowships provided to K. Vanaja (Al Ameen College of Pharmacy, Bangalore, India) and Markus Friden (University of Uppsala, Sweden) for summer training program at AstraZeneca R&D, Bangalore, where this work was conducted. The authors thank Dr. Margret Nakra for her assistance in setting up the CYP2C9 fluorescence assay. Finally, we express our gratitude to Dr. Anand Kumar for his intellectual insights in this project.

REFERENCES

- 1. Fee JPH, Collier PS, Howard PJ, Dundee JW. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987; 41: 80-84.
- 2. Woosely RL, Chen Y, Freiman JP, Gillis RA. Mechanism of cardiotoxic actions of terfenadine. JAMA 1993; 269: 1532-1536.
- Barry M, Gibbons S, Back D, Mulcahy F. Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations. Clin Pharmacokinet 1997; 32: 194-209.
- 4. Riley J, Wilton LV, Shakir SAW. A post-marketing observational study to assess the safety of mibefradil in the community in England. Int J Clin Pharmacol Ther 2002; 40: 241-248.
- 5. Hepler CD, Strand LM. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm 1990; 47: 533-543.
- 6. Rodrigues AD, Lin JH. Screening of drug candidates for their drug-drug interaction potential. Curr Opin Chem Biol 2001; 5: 396-401.
- 7. Shearer TW, Smith KS, Diaz D, Asher C, Ramirez J. The role of in vitro ADME assays in antimalarial drug discovery and development. Comb Chem High Throughput Screening 2005; 8: 89-98.
- 8. Clarke SE, Jones BC. Human cytochromes P450 and their role in metabolism-based drug-drug interactions. Drugs Pharm Sci 2002; 116: 55-88.
- 9. Marroum PJ, Spahn-Langguth H, Langguth P. Scientific, mechanistic and regulatory issues with pharmacokinetics drug-drug interactions. Drugs Pharm Sci 2004; 141 (New Drug Development): 297-343.
- U.S. Food and Drug Administration. Guidance for Industry Drug Metabolism/ Drug Interaction Studies in the Drug Development Process: Studies In Vitro. 1997. http://www.fda.gov/cber/cber/tp.html.
- 11. Den Hollander JG, Mouton JW, Verbrugh HA. Use of pharmacodynamic parameters to predict efficacy of combination therapy by using fractional inhibitory concentration kinetics. Antimicrob Agents Chemother 1998; 42: 744-748.
- 12. Turnridge J. Pharmacokinetics and pharmacodynamics of fluroquinolone. Drugs 1999; 58 (Suppl 2): 29-36.

- Schentag JJ, Gilliland KK, Paladino JA. What have we learned from pharmacokinetic and pharmacodynamic theories? Clin Infect Dis 2001; 32: S39-S46.
- 14. Dudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Microbiol 2000; 3: 515-521.
- 15. Craig WA. Does the dose matter? Clin Infect Dis 2001; 33: S233-S237.
- Slavik RS, Jewesson PJ. Selecting antibacterials for outpatient parenteral antimicrobial therapy: pharmacokinetic-pharmacodynamic considerations. Clin Pharmacokinet 2003; 42: 793-817.
- 17. Workman P. How much gets there and what does it do? The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr Pharm Des 2003; 9: 891-902.
- 18. Riley RJ. The potential pharmacological and toxicological impact of P450 screening. Curr Opin Drug Dis Dev 2001; 4: 45-54.
- Rodrigues AD. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA expressed cytochrome P450s and native liver microsomes. Biochem Pharmacol 1999; 57: 465-480.
- Crespi CL, Stresser DM. Fluorometric screening for metabolism-based drugdrug interactions. J Pharmacol Toxicol Meth 2000; 44: 325-331.
- 21. Testino SA, Patonay G. High-throughput inhibition screening of major human cytochrome P450 enzymes using an in vitro cocktail and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2003; 30: 1459-1467.
- 22. Moody GC, Griffin SJ, Mather AN, McGinnity DF, Riley RJ. Fully automated analysis of activities catalyzed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential. Xenobiotica 1999; 29: 53-75.
- Crespi CL, Miller VP, Penman BW. Microtiter plate assays for inhibition of human, drug-metabolising cytochromes P450. Anal Biochem 1997; 248: 188-190.
- 24. Favreau LV, Palamanda JR, Lin CC, Nomeir AA. Improved reliability of the rapid microtiter plate assay using recombinant enzyme in predicting CYP2D6 inhibition in human liver microsomes. Drug Metab Dispos 1999; 27: 436-439.
- 25. Nomeir AA, Ruegg C, Shoemaker M, Favreau LV, Palamanda JR, Silber P, Lin CC. Inhibition of CYP3A4 in a rapid microtiter plate assay using recombinant enzyme and in human liver microsomes using conventional substrates. Drug Metab Dispos 2001; 29: 748-753.
- 26. Lin JH. Sense and nonsense in the prediction of drug-drug interactions. Curr Drug Metab 2000; 1: 305-331.
- GENTEST Corporation. Technical Bulletin: A High Throughput Method for Measuring Cytochrome P450 Inhibition, Version 4.2, 2000. http://www.gentest.com.
- 28. Peppercorn MA. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann Intern Med 1984; 101: 377-386.
- 29. Carbo M, Segura J, De la Torre R, Badenas JM, Cami J. Effect of quinolones on caffeine disposition. Clin Pharmacol Ther 1989; 45: 234-240.

- Schwartz J, Jauregui L, Lettieri J, Bachmann K. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32: 75-77.
- 31. Waite NM, Rutledge DR, Warbasse LH, Edwards DJ. Disposition of the (+) and (-)-isomers of metoprolol following ciprofloxacin treatment. Pharmacotherapy 1990; 10: 236.
- 32. Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharm Rev 1998; 50: 387-411.
- 33. O'Reilly RA. The stereoselective interaction of warfarin and metronidazole in man. N Engl J Med 1976; 295: 354-357.
- Blyden GT, Scavone JM, Greenblatt DJ. Metronidazole impairs clearance of phenytoin but not of alprazolam or lorazepam. J Clin Pharmacol 1988; 28: 240-245.
- 35. Brunova E, Slabochova Z, Platilova H, Pavlik F, Grafnetterova J, Dvoracek K. Interaction of tolbutamide and chloramphenicol in diabetic patients. Int J Clin Phamacol Biopharm 1977; 15: 7-12.
- 36. Koup JR, Gibaldi M, McNamara P, Hilligoss DM, Colburn WA, Bruck E. Interaction of chloramphenicol with phenytoin and phenobarbital. Clin Pharmacol Ther 1978; 24: 571-575.
- 37. Markowitz JS, Gill HS, DeVane CL, Mintzer J. Fluoroquinolone inhibition of clozapine metabolism. Am J Psychiatry 1997; 154: 881.
- 38. Mieles L, Venkataramanan R, Yokoyama I, Warty VJ, Starzl TE. Interaction between FK506 and clotrimazole in a liver transplant recipient. Transplantation 1991; 52: 1086-1087.
- 39. Block SH. Carbamazepine-isoniazid interaction. Pediatrics 1982; 69: 494-495.
- 40. Miller RR, Porter J, Greenblatt DJ. Clinical importance of the interaction of phenytoin and isoniazid: a report from the Boston Collaborative Drug Surveillance Program. Chest 1979; 75: 356-358.
- 41. Walubo A, Aboo A. Phenytoin toxicity due to concomitant anti-tuberculosis therapy. S Afr Med J 1995; 85: 1175-1176.
- 42. Ochs HR, Greenblatt DJ, Knuchel M. Differential effect of isoniazid on triazolam oxidation and oxazepam conjugation. Br J Clin Pharmacol 1983; 16: 743-746.
- 43. Hansen JM, Kampmann JP, Siersbaek-Nielsen K, Lumholtz IB, Arroe M, Abildgaard U, Skovsted L. The effect of different sulfonamides on phenytoin metabolism in man. Acta Med Scand Suppl 1979; 624: 106-110.
- Christensen LK, Hansen JM, Kristensen M. Sulfophenazole induced hypoglycaemic attacks in tolbutamide-treated diabetics. Lancet 1963; 41: 1298-1301.
- Pond SM, Birkett DJ, Wade DN. Mechanisms of inhibition of tolbutamide metabolism: phenylbutazone, oxyphenbutazone, sulfaphenazole. Clin Pharmacol Ther 1977; 22: 573-579.
- 46. Kharasch ED, Russell M, Mautz D, Thummel KE, Kunze KL, Bowdle A, Cox K. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for

- interindividual variability in disposition and perioperative drug interactions Anesthesiology 1997; 87: 36-50.
- Mesdjian E, Dravet C, Cenraud B, Roger J. Carbamazepine intoxication due to triacetyloleandomycin administration in epileptic patients. Epilepsia 1980; 21: 489-496.
- 48. Wang JS, Wang W, Xie HG, Huang SL, Zhou HH. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997; 44: 195-198.
- 49. Weinberger M, Hudgel D, Spector S, Chidsey C. Inhibition of theophylline clearance by troleandomycin. J Allergy Clin Immunol 1977; 59: 228-231.
- Warot D, Bergougnan L, Lamiable D, Berlin I, Bensimon G, Danjou P, Puech AJ. Troleandomycin-triazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur J Clin Pharmacol 1987; 32: 389-393.
- Backman JT, Aranko K, Himberg J-J, Olkkola KT. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46: 551-555.